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Abstract

Although the general class of most scheduling problems is NP-hard, in practice, domain-spe-
cific techniques frequently solve problems in much better than exponential time. Unfortu-
natcly, constructing spccinl-purpose systems is a knowledge—intensive and time-consuming
process that requires a deep understanding of the domain and problem-solving architecture.
The goal of our work is to develop techniques to alow for automated learning of an effective
domain-specific search stratcgy given a genera] problem solver with a flexible control archi-
tecture. in this approach, a learning system explores « space of possible heuristic methods
for onc well-suited to the eccentricities of the. given domain and problem distribution. We
discuss an application of the approach to scheduling satellite communications. Using prob-
lem distributions based on actual mission requircments, our approach identifies strategies
that not only decrease the amount of CPU time requir cd to produce schedules, but also in-
creasc the percentage of problems that arc solvable within computational resource limita-
tions.
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1 INTRODUCTION

With the maturation of automated problem-solving research has come grudging abandonment of the
search for “the” domain-independent problem solver. Genera) problem-solving tasks like planning
and scheduling arc provably intractable. Although hecuristic methods arc effective in many practical
situations, an ever growing body of work demonstrates the narrowness of specific heuristic strate-
gics (e.g., [Baker94, Frost94, Kambhampati9s, Stonc94, Yang94]). Studies repeatedly show that
astrateg y that excels on onc task can perform abysmal 1y on others. These negative results do not
entirely discredit domain-independent approaches, but they suggests that considerable effort and ex-
pertisc is required to find an accept able combination of heuristic methods. 1 n fact, the few published
accounts of real-world implementations lend support to this conjecture (e.g. [Wilkins88]). The spec-
ificity of heuristic methods isespecially troubling when we consider that problem-solving tasks fre-
quently change over time. Thus, a heuristic problem solver may require expensive “tune-ups’ as
the character character of the application changes.

Adaptive problem solving is agenera] method for reducing the cost of developing and maintaining
cffective heuristic problem solvers. Rather than forcing a developer to choose a specific heuristic
strategy, an adaptive problem solver adjusts itself to the idiosyncrasies of an application. This can
be seen as a natural extension of the principle of least commitment[Sacerdoti77]. When solving
aproblem, onc should not commit to a particular solution path until one has information to distin-
guishes that path from the alternatives. likewise, when faced with an entire distribution of prob-
lems, it makes sense to avoid committing to a particular heuristic strategy until one can make an in-
formed decision on which strategy performs better on the distribution. An adaptive problem solver
embodies a space of heuristic methods, and only settles on a particular combination of these methods
afler aperiod of adaptation, during which the system autornatically acquires information about the
particular distribution of problems associated with the intended application.

in previous art icles, the first author has presented a formal characterization of adaptive problem
solving and has dcveloped a general a genera] method for transforming a standard problem solver
into an adaptive onc [Gratch92, Gratch94]. The primary purpose of thisarticleisto build empirical
support for the method by illustrating its application to areal-world problem solving task. After re-
viewing the basic method, wc describe its application to the development of a large-scale scheduling
system for the National Aeronautics and Space Administration (NASA). Wc applied the adaptive
problem solving approach to aprotot ypc scheduling system that was developed and by a separate
research group, and without knowledge of our adaptive techniques. The prototype scheduler in-
cluded an expert-craflcd scheduling strategy to achicve efficient scheduling performance. By auto-



matically adapting this scheduling system to the distribution of scheduling problems, the adaptive

approach resulted in a significant 1mprovement inscheduling performance over an aready opti-
mized strategy: the best adaptation found by machine learning exhibited an seventy percent im-
provement in scheduling performance. The article is organized as follows: the next section (Section
2) motivates the need for adaptive problem solving and provides aformal definition of the task; Sec-
tion 3 reviews the COMPOSER system (a general approach for constructing an adaptive problem
solver); Section 4 describes the scheduling task, which involves scheduling communication events
between earth-orbiting satellites and fixed ground stations; Section 5 details how we applied adap-
tive problem solving to efficiently construct an effective solution to this complex scheduling prob-
Icm; Section 6 reports on a series of empirical evaluations of the adaptive scheduling system; Section
7 discusses future work and Section 8 summarizes this article’s contributions.

2 ADAPTIVE PROBLEM SOLVING

An adaptive problem solver defers the selection of a heuristic stratcgy unti some information can
be gathered about their performance over the specific distribution of tasks The need for such an
approach is predicated on the claim that it is difficult to identify an effective heuristic strategy a prio-
ri. While this claim is by no means proven, there is considerable evidence that, at least for the class
of heuristics that have been proposed till now, no one collection of heuristic methods will suffice.
FFor example, Kambhampati, Knoblock, and Yang [Kambhampati95] illustrate how planning heuris-
tics embody designiradeoffs -— heuristics that reduce the size of search space typically increase the
cost at each node, and vice versa — and that the desired tradeoff varies with different domains. Simi-
lar observations have been made in the context of constraint satisfaction problems [Baker94,
rost94]. Thisinherent difficulty in recognizing the worth (or lack of worth) of control knowledge
has been termed the utility problem [Minton88] and has been studied cxtensively in the machine
learning community [Gratch92, Greiner92, Holder92, Subramanian92]. In our case the utility prob-
Jem is determining the worth of a heuristic strategy for specific problem distribution.

2.1 FO1<M1II.ATION OF ADAPTIVE PROBLEMSOLVING

Before discussing approaches to adaptive problem solving, wc formally state the common definition
of the task (scc[Gratch92, Greiner92, Laird92, Subramanian92]). Adaptive problem solving re-
quires aflexible problem solver, meaning the problem solver possesses control decisions that may
be resolved in alternative ways. Given a flexible proble:r n solver, PS, with several control points,
CI'] .. CP, (where each control point CP; corresponds to « particular control decision), and a set of




alternative heuristic methods for each control point, {A; ;...M;, },] acontrol strategy defines a spe-
cific method for every control point (c. g, SHUT= <M; 3,M 5,M3 7 ,...>). A control strategy deter-
mines the overal | behavior oft he problem solver. 1.et PSsTrar be the problem solver operating under
aparticular control strategy.

The quality of a problem solving strategy is defined in terms of the decision-theoretic notion of ex-
pected utility. Let U(PSsrrAT: d), is areal valued utility function that is a measure of the goodness
of the behavior oft he problem solver over problem d. Ex pected utility is defined formall y as:

Epl UPSgpan)] = Z UWP§rars d) ™ probability(d)

den

The goal of adaptive problem solving can be expressed as. given aproblem distribution D, find some
control strategy in the space of possible strategies that maximizes the expected utility of the problem
solver For example, in the PRODIGY planning system [Minton88], control points include: how
to select an operator to usc to achieve the goal; how to select variable bindings to instantiate the oper-
at or; etc. A method for the operator choice cent rol point might bc a set of control rulcs to determine
which operat ors to usc to achieve various goals. A strategy for PRODIG Y would bc a set of control
rules and default methods for every control point (e.g., one for operator choice, one for binding
choice, etc.). Utility might be defined as a function of the time to construct a plan for a given plan-
ning problem.

2.2 APPROACHES TO ADAPTIVE PROBLEM SOLVING

Three potentiall y complementary approaches to adaptive problem solving have been discussed in
the literature. The first, what wc call a syntactic approach, isto preprocess a problem-solving do-
main into a more efficient form, based solely on the domain’s syntactic structure. For example, Et-
zioni’s STATIC system analyzes a portion of a planing domain’s deductive closure to conjecture a
set of search control heuristics [Etzioni90]. Dechter and Pear] describe a class of constraint satisfac-
t ion techniques that preprocess a general class of problemsinto a more cfficient form [Dechter87].
More recent work has focused on recognizing those structural properties that influence the effective-
ness of different heuristic methods [Frost94, Kambhampat 195, Stone94]. The goal of this research
is to provide a problcm solver with what is essentially a big lookup table, specifying which heuristic
strategy to usc based on some easily recognizable syntactic features of a domain, While this later
approach seems promising, work in this area is still preliminary and has focused primarily on artifi-
cial applications. The disadvantage of purely syntactic techniques is that that they ignore a potential-
ly important source of information, the distribution of problems. Furthermore, current syntactic ap-

1. Note that amethod may consistof smaller elements so that a method may be asetof control rules or a com-
bination of heuristics.



proaches to this problem have not been very genera): they typically apply to a narrow class of
problems and arc specific to a particular, often unarticulated, utility function (usually problem-solv-
ing cost),

The second approach, which wc call a generative approach, isto generate custom-made heuristics
in response to carcful, automatic, analysis of past problem-solving attempts. Generative approaches
consider not only the struct urc of the domain, but also structures that arise from the problem solver
interacting with specific problems from the domain. This approach is exemplified by SOAR
[Laird86] and the PRODIGY/EBL system of Steve Minton [Minton88]. These techniques analyze
past problem-solving traces and conjectures heuristic control rulesin response to specific problem-
solving inefficiencies. Such approaches can effectively exploit the idiosyncratic structure of a do-
main through this careful analysis. The limitation of such approachesis that they have typically fo-
cused on generating heuristics in response to particular problems and have not well addressed the
issue of adapting to a distribution of problems. Furthermore, as with the syntactic approaches, thus
far they have been directed towards a specific utility function,

The final approach we call the statistical approach. These techniques explicit] y reason about perfor-
mance of different heuristic strategies across the distribution of problems. These are generaly statis-
t ical gcl~cr:ltc-:tn(l-test approaches that cst i mated the average performance of different heuristics
from a random set oft raining examples, and explore an explicit space of heuristics with greedy
search techniques. Examples of such systems are. the COMPOSER system of Gratch and DeJong
[Gratch92], the PALO system of Greiner and Jurisica [Greiner92], and the statistical component of
Minton’s MULTI-TAC [Minton93]. Similar approaches have also been investigated in the opera-
tions research community | Yakowitz90]. These techniques are easy to usc, apply to a variety of do-
mains and utility functions, and can provide strong statistical guarantees about their performance.
They arc limited, however, as they arc computationally expensive, require many training examples
to identify a strategy, and face problems with local maxima. Furthermore, they typically leaveit to
the user to conjecture the space of heuristic methods (scc[Minton93] for a notable exception).

In this article, wc adopt the statistical approach to adaptive problem solving due to its generality and
case of usc. in particular wc usc the COMPOSER tcchnique for adaptive problem solving
[Gratch92, Gratch94], which is reviewed in the next section. Our implementation incorporates some
novel features to address the computational expense of the method. Idcall y, however, an adaptive
problem solver would incorporate some form of each of these methods, To this end we are investi-
gating how to incorporate other methods of adaptation in our current research.



3 COMPOSER

COMPOSER embodies a statistical approach to adaptive problem solving. To turn a problem solver
into an adaptive problem solver, the developer is required to specify a utility function, a representa-
tive sample of training problems, and a space of possible heuristic strategies. COMPOSER then
adapts the problem solver by exploring the space of heuristics via statistical hillclimbing search. The
search space is defined in terms of a transformation generator which takes a strategy and generates
aset of transformations to it. For example, one smple transformation generator just returns al single
method modifications to a given strategy. Thus a transformation generator defines both a space of
possible heuristic strategies and the non-deterministic order in which Ibis space maybe searched.
COMPOSER’S overall approach is one of gencrate and test hillclimbing. Given an initial problem
solver, the transformation generator returns a set of possible transformations to its control strategy.
These arc statistically evaluated over the expected distribution of problems. A transformation is
adopted if it increases the expected performance of solving problems over that distribution. The gen-
crater then constructs a set oft ransformat ions to this new strategy and so on, climbing the gradient
of expected utility values.

Formally, COMPOSER t akcs an initial problem solver, #S0, and ident ifies a sequence of problem
solvers, PSy, ISy, ... where each subsequent PS has higher expected utilit y with probability 1 —
(where 8>0 is some user-specified constant). The transformation generator, 7G, is a function that
t akcs a problem solver and returns a set of candidate changes. Apply(1, PS) is afunction that takes
atransformat ion, t e 7G(PS) and a problem solver and returns a new problem solver t hat is the result
of transforming 7°S with 7. 1.et U;(1’S) denote the utility of PS on problcm j. The change in utility
that at ransformat ion provides for the jth problem, called the incremental utility of a transformation,
is denoted by AU;(71P°S). This is the difference in utility between solving the problem with and with-
out the transformation. COMPOSER finds a problem solver with high cxpected utility by identify-
ing transformations with positive expected incremental utility. The expected incremental utility is
estimated by averaging a sample of randomly drawn incremental utility values. Given a sample of
n values, the average of that sample is denoted by AU, (11 PS). The likel y difference between the aver-
age and the true expected incremental utility depends on tlie variance of the distribution, estimated
from a sample by the sample variance s prs), and the size of the sample, n. COMPOSER provides
a statistical technique for determining when sufficient exainples have been gathered to decide, with
error §, that the expected incremental utility of a transfort nation is positive or negative. The ago-

rithm is summarized in Figure 1.




Given: PS,0.TG(:), 5, examples

[1] PS := PSppq; 7:= TG(PS);i:= O; n:= O; o :=Bound(o, 171);

[2] While7T#0and n < lexamplesl do [* 11illclimb aslong as there is data and possible transformations */
[3] Repeal /* Findnexttransformation */

[4] i:=i+l;n:=n+l; step—taken := FALSE;
[5] V1e ‘'1': Get AU(TIPS) /* Observe incremental utility values for ith problem */
QrIPSy, /* Collect al transformations */
[6] significant:= 1€ 7': nzn, and ol 5 < L 5 ﬁ thj:t(‘thgtygar]ca.chc_c} **//
37 o a statista Signihicance.
[4U,@Ps)] " 1Q@)], &
7] T:=1- [r € significant . AU (tIPS) < 0] /* Discard trans. that decrease expeced utility */
8] If 3t € significant 5,4_Un(T|l’S) >0Then [* Adopt Tthat most increases expected utility */
[9] PS = Apply(x € significant . ¥y € significant [ZI_U,',(xII’S) > A U,, yIPS) 1, PS)
[10] 7= TG(PS);n:= o0; o := Bound(d,'1"); step--taken :=TRUE;

[11]  Until step-taken or 7= or n=lexamplesl;

Return: PS 0

Bound(d, \T) : = % , Q(a) : = x where [ ](/ \/ig:ﬁ(t' 05y = %
;.

Figure 1: The COMPOSER algorithm

COMPOSER'’ S techniquc is applicable in cases where the following conditions apply:

1. The control strategy space can be structured to facilitate hillclimbing search. In general, the space
of such strategies is so large as to make exhaustive search intractable. COMPOSER requires a trans-
formation generator that structures this space into a sequence of search steps, with relatively few
transformations at each step. in Section 5.1 wc discuss some techniques for incorporating domain
specific information into the structuring of the control strategy space.

2. Thereis alarge supply of representative training problems so that an adequate sampling of prob-
lems can be used to estimate cxpected utility for various control strategies.

3. Problems can be solved with a sufficiently low cost in resources so that estimating expected utility

18 fcasible.

4. There is sufficient regularity in the domain such that the cost of lecarning a good strategy can be
amortized over the gains in solving many problems.



4 THE DEEP SPACE NETWORK

The Deep Space Network (IDSN) is a multi-national collection of ground-based radio antennas re-
sponsible for maintaining communications with research satellites and deep space probes. DSN Op-
erations is responsible for schedul i ng communicant i ons for a large and growing number of spacecraft.
This already complex scheduling problem is becoming more challenging each year as budgetary
pressures limit the construction of new antennas. As a result, DSN Operations has turned increasing-
ly towards intelligent scheduling techniques as a way of increasing the efficiency of network utiliza-
tion. As part of this ongoing effort, the Jet Propulsion Laboratory (JP1.) has been given the responsi-
bilit y of automating the scheduling of the 26-meter sub-net; a collection of three 26-meter antennas
at Goldstone, CA, Canberra, Australia and Madrid, Spain.

in this section wc discuss the application of adaptive problem-solving techniques to the development
of a prototype system for automated scheduling of the 26-meter sub-net. We first discuss the devel-
opment of the basic scheduling system and then discuss how adaptive problem solving enhanced the
scheduler’s effectivencss.

4.1 THE SCHEDULING PROBLEM

Scheduling the DSN 26-mcter subnet can be viewed as a laige constraint satisfaction problem. Each
satellite has a set of constraints, called project requirements, that define its communication needs.
A typical projcct specifics three generic requirements: the minimum and maximum number of com-
munication events required in a fixed period of time; the minimum and maximum duration for these
communication events; and the minimum and maximum allowable gap between communication
events. For example, Nimbus-7, a meteorological satellite, must have at least four 1 S-minute com-
munication slots per day, and these slots cannot be greater than five hours apart. Project require-
ments arc determined by the project managers and tend to be invariant across the lifetime of the
spacecraft.

]n addition to projectrequirements, there are constraints associated with the various antennas. First,
antennas arc a limited resource — two satellites cannot communicate with a given antenna at the same
time. Second, a satellite can only communicate with a given antenna at certain times, depending on
when its orbit bringsit within view of the antenna. Finally, antennas undergo routine maintenance
and cannot communicate with any satellite during these times.

Scheduling is done on a weekly basis. A weekly scheduling problem isdefined by three elements:
(1) the set of satellites to be scheduled, (2) the constraints associated with each satellite, and (3) a
set of time periods specifying all temporal intervals when a satellite can legally communicate with
an antenna for that week. Each time period is atuple specifying a satellite, a communication time




interval, and an antenna, where (1) the time interval must satisfy the communication duration
constraints for the satellite, (2) the satellite must be in view of the antenna during this interval. An-
tenna maintenance is treated as a project with time periods and constraints. Two time periods con-
flictif they usc the same antenna and overlap in temporal extent. A valid schedule specifies a non-
conflicting subsct of all possible time periods where each project’ s requirements are satisfied.

The automated scheduler must generate schedules quickly as scheduling problems are frequently
over-constrained (i.e. the project constraints combined with the allowable views produces a set of
constrains which is unsatisfiable) When this occurs, DSN Operations must go through a complex
cycle of negotiating with project managers to reducc their requirements. A goal of automated sched-
uling is to provide a system with relatively quick response time so that a human user may interact
with the scheduler and perform “what if” reasoning to assist in this negotiation process. Ultimately,
the goal is to automate this negotiation process as well, which will place even greater demands on
scheduler response t i me (see [ Chien94] for some preliminary work on th is 1 ater problem). For these
reasons, the focus of development is upon heuristic techniques that do not necessarily uncover the
optimal schedule, but rather produce a adequate schedule quickly.

4.2 THE LR-26 SCHEDULER

1X-26 is a heuristic scheduling approach to DSN scheduling being developed at the Jet Propulsion
Laboratory [Bell93].2 1X-26 is based on a O-1 integer linear programming formulation of the prob-
lem [Taha82]. Scheduling is cast as the problem of finding an assignment to integer variables that
maximizes the value of some objective function subject to a set of linear constraints. In particular,
time periods arc treated as O-1 integer variables: O (or OUY) if the time period is excluded from the
schedule; 1 (or IN) if it isincluded. The objective is to maximize the number of time periodsin the
schedule and the solution must satisfy the project requirements and antenna constraints (expressed
as sets of linear inequalities). A t ypicalscheudling problem under this formulation has 700 variables
and 1300 constraints.

]n operations research, integer programs are solved by a variety of techniques including branch-and-
bound search, the gomory method [Kwak87], and Lagrangian relaxation [I1~ishcr81 ]. In artificial in-
telligence such problems arc solved by constraint propagation search techniques such as [Dechter92,
Mackworth92]. To address the complexity of the scheduling problem 1.1<-26 uses a hybrid approach
that combines l.agrangian relaxation with constraint propagation search. l.agrangian relaxation is
adivide-and-conquer method which, given a decomposition of the scheduling problem into a set of
easier sub-problems, coerces the sub-problems to be solved in such a way that they frequently result

2. 1X-26 stands for the Lagrangian Relaxation approach to scheduling the 26-meter sub-net (see below).



in a global solution. Onc specifies a problem decomposition by identifying a subset of problem
constraints that, if removed, result in one or more independent and computationally easy sub-prob-
lems.? These problematic constraints are “relaxed,” meaning they no longer act as constraints but
instead arc added to the objective function in such that way that (1) there is incentive to satisfying
these relaxed constraints when solving the sub-problems and, (2) the best solution to the relaxed
problem, if it satisfies all relaxed constraints, is guaranteed to be the. best solution to the original
problem. Furthermore, this relaxed objective function is parameterized by a set of weights (one for
each relaxed constraint). By systematically changing these weights (thereby modifying the relaxed
objective function) the sub-problems can often be coerced into producing a global solution. Even
if this weight search dots not produce a global solution, it can make the solution to the sub-problems
sufficiently close to a global solution that a global solution can be discovered with substantially re-
duccd constraint propagation search.

In the DSN domain, the scheduling problem is decomposed by scheduling each antenna indepen-
dently. Specifically, the constraints associated with the complete problem can be divided into two
groups: those that refer to asingle antenna, and those that mention multiple antennas. The later are
relaxed and the resulting single-antenna sub-problems can be solved in time linear in the number
of time periods associated with that antenna (sce below). 1.LR-26 solvcs the complete problem by
first trying to coerce a global solution by performing a search in the space of weights and then, if
that fails to produce a solution, resorting to constraint propagation search in the space of possible

schedules.

4.2.1 Variables and Schedules

We now describe the formalization of the problem. Let 7 be a set of projects, A a set of antennas,
and M ={0,.., 10080] bec the minutes in aweek. 1.et V C PXAxXMxM denote the set of possible time
periods for a week, where a given time period specifies a project, antenna and the start and end of
the communication event, respectively. For agiven vi €V, let projeci(v;), antenna(v;), stari(v;), and
end(v;) denote the corresponding elements of v;.

With each time period, Vie V, wc associate a O--1 integer variable, which wc will refer to as vi for
compact ness. et Vi = 1 (vi = IN) mean that the time period is included in the schedule and v; = O
(v,;= OUT) mean that the time period is excluded from the schedule. A ground schedule is an assign-
ment of zero or onc to each vie V. We can denote a ground schedule by an variable assignment func-
tion s:V—{0O, 1}. A partial schedule refersto aschedule with onl y a subset of its variables assigned
avaluc, denoted by a partia assignment function s,:V—>{0,1,7} (where ?”indicates that the vari-

3. Aproblem consistsof independent sub-problems it the global objective function can be maximized by finding
some Maximal solution for each sub-problem in isolation.
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able could be ether in or out of the ground schedule). A partial schedule corresponds a set of ground
schedules consistent with the partial assignment. The completely uncommitted partial schedule
(with no variables assigned avalue), sp: V ->{ ?}, denotes the set of all possible ground schedules,

4.2.2 Constraints

Each project p; € P associated with a set of constraints called project requirements. All constraints
arc processed and translated into ssimple linear inequalities over clements of V. Project requirements
can be partitioned into two sets of linear inequalities based on their syntactic form:

Ri{ %ajvzbi }, Ry={% ajv < biy.

where a;j; represents aweighting factor indicating the degree to which a particular view contributes
to satisfying a constraint. For example, the constraint that a project, pj, must have at least 100 min-
utes of communication time in aweek is a member of R;:

vilend(v)-start(v)] = 100.

v € Vprajec 1(v) = i

The constraint on the minimum and maximum duration for a communication event is satisfied im-
plicitly in the definition of V:vi e Viff rein-duration <end(v;) —star1(v;) < max-duration .* All project
requirements can be straightforwardly translated into a set on linear inequalities.
Each of the three antennas has the constraint that no two projects can usc the antenna at the same
time. This can be translated into a set of linear inequalitics C, for each antenna a as follows:

Co ={ vi + vy <11Vi#v; A antenna(v; )=antenna(v)) =@ A [S’(”‘l("i)-'0’1(1("1')Im[.S'Iart(vj)..end(\g)] #Q)
4.2.3 Problem Formulation

The basic scheduling objective is find some ground schedule, denoted by s*, that maximizes the
number of time periods in the schedule subject to the projcct and antenna constraints:?

Problem: DSN

I . = e N ) l
Find: s* = arg Sng?x{Z = 2‘1 (1)
0 \%

Subject to: auC UC3UR; VR,

4. This restriction is aninherent limitation in the formalization as the scheduler cannot entertain variable length
communication events — communicat ion events must be descretized into afinite set of fi xed length intervals.

5. Thismight correspond to the desire to maintain maximum downlink flexibility. Alternative formalization
might attempt to minimize the number of views in the schedule to model reducing operations costs.
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With Lagrangian relaxation, only the antenna constraints are retained and the remaining constraints
arc folded into the objective function. The Lagrangian relaxation formulation of the problem (due
to Colin Bell) is:

Problem: DSN@)

Find: sHu) = argmaxdZ) = > v > [ Vit ] >’ -[1~ . ] ()
(1) gse% () ZV' ¢ %M, zauvj d Zul b Eauvj

RZ
Subject to: VG UG

where Z(u) is the relaxed objective function and u is a vector of non-negative weights of length
IR1OR2 | (one for each relaxed constraint). Note that this defines a space of relaxed problems that
depend on the weight vector . 1.et Z* denote the value of the optimal solution of the original prob-
lem (Definition 1), and let Z*(u) denote value of the optimal solution to the relaxed problem (Defini-
tion 2) for a particular weight vector . For any weight vector u, Z*(u) can be shown to be an upper
bound on the value of Z* Thus, if a relaxed solution satisfies all of the origina problem constraints,
it is guaranteed to be the optimal solution to the original problem (i.c.s; = s *). Lagrangian relax-
ation proceeds by incrementally tightening this upper bound (by adjusting the weight vector) in the
hope of identifying a global solution. A global solution cannot always be identified in this manner,
so a compete scheduler must combi nc Lagrangian relaxat ion with some for of search.

4.2.4 Search

The original problem formulation (1), can be solved (expensivel y !) by basic refinement search
[Kambhampati95] (or split-and-prune search [Dechter87]) in the space of partial schedules. In this
search paradigm a partial schedule is recursively refined (split) into a set of more specific partial
schedules. In 1.R-20, refinement is clone by forcing uncommitted time periods in or out of the sched-
ule. For example, atime period is excluded from the schedule if it temporally conflicts with atime
period that has been forced in.  Search continues non-deterministicall y until the best ground sched-
ulc isfound or all schedules arc pruned.

Each refinement is further refined by propagating the local consequence of new commitment. After
avariableis set to a particular value, each individua constraint which references that variable is ana-
lyzed to determine which view would be forced in or out of the schedule as a result of the assignment.
1.R-26 performs only partial constraint propagation, because complete propagation is computation-
aly expensive. Specifically, if constraint Cl references variables V,, V,and V., and V,is assigned

12



avalue, 1.R-26 analyzes C 1 tosce if the ncw assignment determines the value of V ,and/or V.. If,
for example, V,is constrained to take on a particular value, this triggers analysis of al constraints
which contain V,. This can be viewed as performing arc—consistency [DDcchter92]. During the
constraint propagation it may be possible to show that the refinement contains no valid ground
schedule. |n this case the partial schedule may be pruned from the search.

LR-26 augments this basic refinement search with lLagrangian relaxation to heuristically reduce the
combinatorics of the problem. The difficulty with refinement search isit may have to perform con-
siderable (and poorly dirccted) search through a tree of refinements to identify a single satisficing
solution. If an optima] solution is sought, every lcaf of this search tree must be examined. °In con-
trast, by searching through the space of relaxed solutions to a partial schedule, one can sometimes
identify the best schedule without any refinement search. Fiven when this is not possible, Lagrangian
relaxation heuristically identifies a small set of problematic constraints, focusing the subsequent re-
finement search. Thus, by performing some search in the space of relaxed solutions at each step,
the augmented search method can significantly reduce both the depth and breadth of refinement
search.

The augmented procedure works to the extent that it can efficiently solve relaxed solutions, ideally
allowing the algorithm to explore several points in the space of weight vectors in each step of the
refinement search. 1.R-26 solves relaxed problems in linear time, O(1C;WC,UC31). To see this, note
that each time period appears on exact 1y onc anten na. Thus Z(u) can bc broken into the sum of three
objective functions, each containing only the time periods associated with a particular antenna. Each
of these single antenna problems can be formulated and solved as a problem of finding the longest
path in an acyclic network: sort time periods by their start time; then for each view in sequence either
(1) exclude the time period, leaving the value of the schedule unchanged, and proceed to next time
period in scquence, or (2) include the time period, increasing the value of the schedule by an amount
determined by the weight cocfficients in the relaxed objective function, and proceed to next non-
overlapping ti mc period in sequence. This can be solved in linear time by dynamic programming
(sec [Bell93] for more details).

6. Partial schedules may also be pruned, as in branch-and-bound search, if they can be shown to contain lower
value solutions that other partial schedules. In practice | R-26 is run in asatisficing mode, meaning that search
terminates as soon as a ground schedule is found (not necessarily optimal) that satisfies al of the problem
congtraints.
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The augmented refinement search performed by | .R-26 is summarized as follows:

1.1{-26 Scheduler
Agenda = {sp};

Whilc Agenda # &
(1 Select some partia schedule s € Agenda; Agenda: =Agenda- {9)
2 search for Some s*(u)es;

1T s*(u) satisfies R WR, Then
Return s*(u);
Else
3) Select constraint ¢ € 7R, not satisfied by s*(u);
4 Refine sinto { S}, such that each s ¢ Si satisfies ¢
and\U{si} =
Perform Constraint Propagation
Agenda:=Agenda{si};

Figure 2: The basic 1.R-26 refinement search method.

4.2.5 Performance Tradeoffs

Perhaps the most difficult decisions in constructing the scheduler involve how to flesh out the details
of steps 1,2, 3, and 4. The constraint satisfaction and operations research literatures have proposed
many heuristic mcthods for these steps. Unfortunately, due to their heuristic nature, it is not clear
what combination of mcthods best suits this scheduling problem. The power of a heuristic method
depends on subtle factors that arc difficult to assess in advance. When considering multiple meth-
ods, onc has to additionally consider interactions between methods.

In LR-26 a kcy interact ion arises in the tradeoff between the amount of weight vector search vs. re-
finement search performed by the scheduler (as determined by Step 2). At each step in the refine-
ment search, the scheduler has the opportunity to search in the space of relaxed solutions. Spending
more effort in this weight search can reduce the amount of subsequent refinement search. But at
some point the savings in reduced refinement search may be overwhelmed by the cost of performing
the weight search. Thisis a classic example of the utility problem [Minton88], and it is difficult to
scc how best to resolve the tradeoff without intimate knowledge of the form and distribution of
scheduling problems.

Another import ant issue for improving scheduling efficiency is the choice of heuristic methods for
cent rolling the direct ion of refinement search (as determined by steps 1,3, and 4). Often these meth-
ods arc stated as general principles (e.g. “first instantiate variables that maximally constrain the rest

of the search space” [Dechter92 p. 277]) and there may bc many ways to realize them in a particular
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scheduler and domain. Trurthermore, there are admost certainl y interact ions bet ween methods used at
different control points that makes it difficult to construct a good ova-all strategy.

These tradcoffs conspire to make manual development and evaluation of heuristics a tedious, uncer-
tain, and time consuming task that requires significant knowledge about the domain and scheduler.
In the case of LLR-26, its initial control strategy was identificd by hand, requiring a significant cycle
oft rial-and-error evaluation by the developer over a small number of arti fici a problems. Even with
this effort, the resulting scheduler isstillexpensive to usc, motivating us to try adaptive techniques.

5 ADAPTIVE PROBLEM SOLVING FOR THE DEEP SPACE NETWORK

Wc developed an adaptive version of the scheduler, Adaptive LR-26, in an attempt to improve its
performance.” Rather than committing on a particular combination of heuristic strategies, Adaptive
1.R-26 embodies an adaptive problem solving solution. The scheduler is provided a variety of heu-
ristic methods, and, after a period of adaptation, settleson a particular combination of heuristics that
suits the actual distribution of scheduling problems for this domain.

To perform adaptive problem solving, we must formally specify three things: a transformation gen-
crator that defincs the space of legal heuristic control strategies; a utility function that captures our
preferences over strategies in the control grammar; and arcpresentative sample of training prob-
lems, Wc describe each of these elements as they relate to the DSN scheduling problem.

5.1 TRANSFORMATION G E NERATOR

The description of 1.R-26 in Figure 2 highlights four points of non-determinism with respect to how
tbc scheduler performs its refinement search. To fully instantiate the scheduler we must specify a
way of ordering clements on the agenda, a weight search method, a method for selecting a constraint,
and a method for generating a spanning set of refinements that satisfy the constraint. The aternative
ways for resolving these four decisions arc specified by a control granmmar, which wc now describe.
The grammar dcfines the space of legal search control strategies available to the adaptive problem
solver.

S 1. | Sdect some partial schedule

The first decision in the refinement search is to choose some partial schedule from the agenda. This
selection policy defines the character of the search. Maintaining the agenda as a stack implements
depth-first search. Sorting the agenda by some value function implements a best-first search. In
Adaptive 1.R-26 wc rest rict the space of methods to variants of depth- first search. Each time a set
of refincments is created (Decision 4), they arc added to the front of the agenda. Search always pro-
ceeds by expanding the first partial schedule on the agenda. Heuristics act by ordering refinements

7. This system has also been referred to by the name of DSN-COMPOSER [Gratch93 ].
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before they are added to the agenda. The grammar specifics several ordering heuristics, sometimes
called value ordering heuristics, or look—ahead schemes in the constraint propagation literature
[Dechter92, Mackworth92]. As these methods are entertained during refinement construction, their
detailed description is delayed until that section.

|.ook-ahead schemes dccide how to refine partial schedules. Look-back schemes handle the reverse
decision of what to do whenever the scheduler encounters a dead end and must backtrack to another
partial schedule. Standard depth-first search performs chronological backtracking, backing up to
the most recent decision. The constraint satisfaction literature has explored severa heuristic alterna-
tives to this simple strategy, including backjumping [Gaschnig79], backmarking [Haralick80], dy-
namic backtracking [Ginsberg93], and dependency-directed backtracking [Stallman77] (see Backer
[Baker94] and Frost and Dechter [Frost94] forarecent evaluation of these methods). We are current-
ly investigating look-back schemes for the control grammiar but they will not be discussed in this
article.

S 1.2 Search for some relaxed solution

The next dimension of flexibility isin weight-adjusting methods to search the space of possible re-
laxed solutions for a given partial schedule. The gencral goal of the weight search is to find a relaxed
solution that is closest to the true solution in the sense that as many constraints arc satisfied as pos-
sible. This can be achieved by minimizing the value of Z*(u) with respect to u. The most popular
method of scarching this space is caled subgradient-op timization[Fisher8 1 ]. Thisis a standard op-
timization method that repeatedly changes the current u in the direction that most decreases Z* (u).
Thusat step i, u;4 ;= u; + id whereliisastep size and dis a directional vector in the weight space,
The method is expensive but it is guaranteed to converge to the minimum Z*(u«) under certain condi-
tions[11cld70]. A less expensive technique, but without the convergence guarantee, is to consider
only onc weight ata time when finding an improving direction. Thus#i+; = u; + t;d; where is a
directional vector with zerocs in all but one location. This method is called dual-descent. in both
of these methods, weights arc adjusted until there is no change in the relaxed solution: s*(i;) =

$¥ (Ui 1)-

While better relaxcd solutions will create greater reduction in the amount of subsequent refinement
search, it is unclecar just where the tradeoff between these two search spaces lies. Perhaps it is unnec-
essary to spend much timei reproving relaxed schedules. Thus a more radical, and extremely effi-
cient, approach is to scttle for the first relaxed solution found. We call this the first-solution method.
A more moderate approach is to perform careful weight search at the beginning of the refinement
search (where there is much to be gained by reducing the subsequent refinement search) and to per-
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form the more restricted first-solution search when deeper in the refinement search tree. The rrun-
cated-dual-des cent method performs dual-descent at the initial refinement search node and then
uscs the first-solution method for the rest of the refinement search

The control grammar includes four basic methods for performing the weight space search:

Weight Search Methods
2a Subgradicent-opti mization 2c: “1'runcated-dual-descent

2b: Dual-descent 2d: First-solution

S 1.3 Select some constraint

If the scheduler cannot find arclaxed solution that solves the origina problem, it must bresk the cur-
rent partial schedule into a set of refinements and explore them non-deterministical ly. In Adaptive
1X-26, the task of creating refinements is broken into two decisions. selecting an unsatisfied
constraint (Decision 3), and creating refinements that make progress towards satisfying the selected
constraint (Decision 4). Lagrangian relaxation simplifies the first decision by identifying a small
subset of constraints that appear problematic. However, this still leaves the problem of choosing one
constraint in this subset on which to base the subsequent 1 cfincment.

The common wisdom in the search community is to choose a constraint that maximally constrains
the rest of the search space, the idea being to minimize the size of the subsequent refinement search
and to allow rapid pruning if the partial schedule is unsatisfiable. Therefore, our control grammar
incorporates several alternative heuristic methods for locally assessing this factor. Given that the
common wisdom is only a heuristic, we include a small numiber of methods that violate this intuition.
All of these methods arc functions that look at the local constraint graph topology and return a value
for each constraint. Constraints can then be ranked by their value and the highest value constraint
Chosen. The control grammar implements both a primary and secondary sort for constraints.
Constraints that have the same primary value are ordered by their secondary value.

For the sake of simplicit y wc discuss only measures for constraints belonging to RI. & Recall that
these constraints have the form Za;;v; > bi. (The measures arc defined analogously for constraints
of typc K2.) Wc first define measures on time periods. Measures on constraints are functions of the
measures of the time periods that participate in the. constraint.

Measures on ‘lime PPeriods

8. This constraint type suffices to represent the project requirements for the projects implemented in 1X-26.
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An unforced time period is onc that is neither in or out of the schedule (vi=?). The conflictedness
of an unforced t i me period v (with respect to a current partial schedule) is the number of other un -
forced t imc periods that will be forced out if v is forced int o the schedule (because they participate
in an antenna constraint with v). If atime period is aready forced out of the current partial schedule,
it dots not count toward v’s conflictedness. Forcing in atime period with high conflictedness will
result in many constraint propagations, which reduces the number of ground schedules in the refine-

ment.

The gain of an unforced t ime period v (with respect to a current partial schedule) is the number of
unsatisfied project constraints that v participates in. Preferring time periods with high gain will make
progress towards satisfying many project constraints simultaneously.

The loss of an unforced time period v (with respect to a current partial schedule) is a combination
of gain and conflictedness. Loss isthe sum of the gain of each unforced time period that will be
forced out if v is forced into the schedule. Time period with high loss arc best avoided as they prevent
progress towards satisfying many project constraints.

To illustrate these measures, consider the simplified scheduling problem in Figure 3.
P P

I'reject Constraints
'l:v]+v2+v322

Prvy+ v+ V422

Antenna Constraints
Az V] + v3< ]
A vy + vy < 1

A A

Figure 3: A simplified DSN scheduling problem based on four time periods. There are two
project constraints, and two antenna constraints, For example, I’; signifies that at least two of
the first three time periods must appear in the schedule, and Al signifies that either v; or vz may
appear in the schedulc, but not both. In the solution, only v and v; appear in the schedule.

With respect to the initial partial schedule (with none of the time periods forced either in or out) the
conflictedness of V2 isone, because it appears in just one antenna constraint (Az). If subsequently,
V,is forced out, then the conflictedness of V,drops to zero, as conflictedness is only computed over
unforced time periods. Theinitial gain of v,istwo, asit appears in both project constraints. Its gain



drops to oneif v3 and V ,arc then forced into the schedule, as P,becomes satisfied. The initial loss
of V,isthe sum of the gain of all views conflicting with it (v4). The gain of V,is one (it appearsin
P2) so that the loss of V2 is one.

Measures on Constraints

Constraint measures (with respect to a partial schedule) can be defined as functions of the measures
of the unforced t imc periods that participate in a constraint. The functions max, rein, and total have
been defined. Thus, rotal-conflictedn ess is the sum of the conflictedness of al unforced time periods
mentioned in a constraint, while max-gain is the maximum of the gains of the unforced time periods.
Thus, for the constraints defined above, the initial total-conflicted ness of P,isthe conflictedness of
V, V,and v3, 1 + 1 + 1=3. Theinitial max—gain of constraint Pl is the max of the gains of vy, V,,
and vz or max{1,2,2) = 2.

Woc also define two other const raint measures. The unforced-periods of a constraint (with respect
to a partial schedule)issimply the number of unforced time periods that arc mentioned in the
constraint. Preferring a constraint with a small number of unforced time periods restricts the number
of rcfi nements that must be considercd, as refinements consider combinations oft i me periods to
force into the schedule in order to satisfy the constraint, Thus, the initial unforced-periods of Pl is
3(vy, v2, and vj).

The satisfaction -distance of aconstraint (with respect to a partial schedule) is a heuristic measure
the number of time periods that must be forced in order to satisfy the constraint. The measure is
heuristic because it does not account for the dependencics between time periods imposed by antenna
constraints. The initial satisfaction-distance of P,istwo because two time periods must be forced
in before the constraint can be satisfied,

Given these constraint measures, constraints can be orde: ccl by some. measure of their worth. To
complete the definition of a constraint ordering heuristic we must specify if ameasure isto be pre-
ferred or penalized. For example we may prefer constraints with high total conflictedness. This heu-
rist ic is denoted as prefer-total-conflictedriess. Not @ | possible combinat ions seem meaningful so
the control grammar for Adaptive 1.R-26 implements the following nine constraint ordering heuris-
tics:
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Constraint Selection Methods

3a: Prefer-max-gai n 3f: Penalize-total-conflictedness
3b: Prefer-total-gain 3g: Prefer-min-conflictcclness
3c: Penalize-max-loss 3h: Pcnali~,c-unforced-periods
3d: Penalize-max-conflictedness 3i: Pcnali~,c-satisfaction-distance

3c: Prefer-total-conflictcdness

5.1.4 Refine partial schedule

Given a selected constraint, the scheduler must create a sct of refinements that make progress to-
wards satisfying the constraint. If the constraint is a member of R; (Za;v; 2 b;) then some time peri-
ods on the left-hand-side must be forced into the schedule if the constraint is to be satisfied, Thus,
refinements arc constructed by identifying a set of ways to force time periods in or out of the partial
schedules such that the refinements form a spanning set: L {si } =s. These refinements are then or-
dered and added to the agenda. Again, for simplicity wc restrict discussion to constraintsin R;.

The Basic Refinement Mecthod

The basic method for refining a partial schedule is to take each unforced time period mentioned in
the constraint and create arcfinement with the time period vj forced into the schedule. Thus, for the
constraints defined above, there would be three refinements to constraint P1, one with v forced IN:
one with V,forced IN, and one with v3 forced IN.

Each refinement is further refined by performing constraint propagation (arc consistency) to deter-
mine some local consequences of this new restriction. Thus, every time period that conflicts with
v; isforced out of the refined partia schedule, which in turn may force Other time periodsto be in-
cluded, and so forth. By this process, some refi nements maybe recognized as inconsistent (contain
no ground solutions) and arc pruned from the search space (for efficiency, constraint propagation
is only performed when partial schedules arc removed from the agend @).

Once the set of refinements has been created, they arc ordered by a value ordering heuristic before
being placed on the agenda, Aswith constraint ordering heuristics, there is a common wisdom for
creating value ordering heuristics: prefer refinements that maximized the number of future options
avai lable for futurc assignments [Dechter87, H aralick80]. The control grammar implements several
heuristic methods using measures on the time periods that created the refinement. For example, one
way to keep options available isto prefer forcing in atime period with minimal conflictedness. As
the common wisdom is only heuristic, wc also incorporate a method that violates it. The control
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grammar includes the following value ordering heuristics that arc derived from the measures on time
periods:

Value Ordering Methods
la: Prefer-gain 1d: Prefer-conflictcdncss
1 b: Penalize-]oss 1 c: Arbitrary
1 c: Penalize-conflictcdncss

where the last method, arbitrary, just uses the ordering of the time pecriods as they appear in the
constraint.

The Systematic Refinement Method

The basic refinement method has one unfortunate property that may limit its effectiveness. The
search result ing from this refinement method is unsystematic in the sense of McAllister and Rosen-
blitt [McAllcster91 ]. This means that there is some redundancy in set of refinements: s;Ms;#(J. Un-
systematic search is inefficient in that the total size of the refinement search space will be greater
than if a systematic (non-redundant) refinement method is used. This may or may not be adisadvan-
tage in practice asscheduling complexity is driven by the size of the search space actuall y explored
(the effective search space) rather than its total size. Nevertheless, there is good reason to suspect
that a systematic method will lead to smaller effective search spaces,

A systematic refinement method chooses a time period that helps satisfy the selected constraint and
then forms a spanning set of two refinements: one with the time period forced in and one with the
time period forced out. These rcfincments arc guaranteed to be non-overlapping. The systematic
method incorporated in the control grammar uses the value ordering heuristic to choose which un-
forced time period to usc. The two refinements arc ordered based on which makes immediate prog-
ress towards satisfying the constraint (e.g., v=IN isfirst for constraintsin R&7). The control grammar
includes both the basic and systematic refinement methods:

Refinement Methods

4a: Basic-Refinement 4b: Systematic-Refinement
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For the problem specified in Figure 3, when systematically refining constraint PI, one would usc the
value ordering method to select among views V1, V,, and v3. If V,were selected, two refinements
would be proposed, onc with v2 forced IN and one with V,forced OUT.

CONTROI1 . STRATEGY := VAL .UE ORDERING A
WEIGHT SEARCH METHOD A
PRIMARY CONSTRAINT ORDERING A
SECONDARY CONSTRAINT ORDERING A
REFINEMENT METHOD

VALUE ORDERING
WEIGHT SEARCH MII'1’110D {2a, 2b,2c¢,2d}

PRIMARY CONSTRAINT ORDERING {3a, 3b, 3¢, 3d, 3¢, 3f, 3g, 3h, 31}
SECONDARY CONSTRAINT orbering = {38, 3b, 3¢, 3d, 3¢, 3f, 3g, 3h, 3i})
REFINEMENT METHOD :={4a, 4b}

{la, Ib, Ic, 1d,1e}

1

Figurc4: Control grammar for Adaptive 1.R-26

The control grammar is summarized in Figure 4. The original expert cent rol strategy developed for
LR-26 isa particular point in the control space defined by the grammar: the value ordering method
is arbitrary (1c); the weight search is by dual-descent (2b); the primary constraint ordering is penal-
izc-unforced-periods (3h); there is no secondary constraint ordering, thus this is the same as the pri-
mary ordering; and the basic refincment method is used (4a).

S. 1.5 Meta-control Knowledge

The constraint grammar defines a space of close to three thousand possible control strategies. The
quality of a strategy must be assessed with respect 10 a distribution of problems, therefore it is prohib-
itively expensive to exhaustively explore the control space: taking a significant number of examples
(say fifty) on each of the strategies at a cost of 5 CPU minutes pcr problem would require approxi-
mately 450 CPU days of effort.

COMPOSER requires a transformation generator to specify alternative strategies. These strategies
arc explored via hillelimbing search. In this case, the obvious way to procecd is to consider all single
method changes to a given control strategy. However the cost of searching the strategy space and
quality of the final solution depend to a large extent on how hillclimbing proceeds, and the obvious
way need not be the best. In Adaptive 1X-26, wc augment the control grammar with some domain-
specific knowledge to help organize the search.  Such knowledge includes, for example, our prior
expectation that certain control decisions would interact, and the likely importance of the different
control decisions. The intent of this “recta-control knowledge” is to reduce the branching factor in
the control strategy search and improve the expected utility of the locally optimal solution found.
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This approach ledto alayered search through the strategy space. Each control decision is assigned to
alevel. The control grammar is search by evaluating all combinations of methods at asingle level,
adopting the best combinations, and then moving onto the next level. The organization is shown
below:

Level o (weight Search method }

level 1 {Refinement method}

Level 2: {Secondary constraint ordering, Value ordering}
level 3: {Primary constraint ordering }

The weight search and refinement control points arc sepai ate, as they seem relatively independent
from the other control points, in terms of their effect on the overall strategy. While there is clearly
some interaction between weight search, refinement construction, and the other control points, a
good selection of methods for pricing and alternative construction should perform well across al
ordering heurist its. The primary constraint ordering met hod is relegated to the last level because
some effort was made in optimizing this decision in the expert strategy for LR-26, and wc believed
that it was unlikely the default strategy could be improved.

Given this transformation generator, Adaptive 1.R-26 performs hillclimbing across these levels. It
first entertains weight adjustment methods, then alternative construction methods, then combina-
tions of secondary constraint sort and child sort methods, and finally primary constraint sort meth-
ods. Each choice is made given the previously adopted methods.

This layered search can be viewed as the conscquence of asserting certain t ypcs of relations between
control points. independence relations indicate cases in which the utility of methods for one control
point is rough] y independent of the methods used at other control points. Dominance relations indi-
cate that the changes in utility from changing methods for onc control point arc much larger than the
changes in utility for another control point, Finaly, inconsistency relations indicate when a method
M; for control point X is inconsistent with method M2 for control point ¥, This means that any strate-
gy using these mcthods for these control points need not be considered.

S.2 EXPECTED UTILITY

Aspreviously mentioned, a chief design requirement for LR-26 is that the scheduler produce solu-
tions (or prove that none exist) efficiently. This behavioral prefcrence can be expressed by a utility
function related to the computational effort required to solve a problem. As the effort to produce
aschedule increascs, the utility of the scheduler on that problem should decrease. In this paper, we
characterize this preference by defining utility as the negative of the CPU time required by the sched-
uler on aproblem. Thus, Adaptive LR-26 tunes itself to strategies that minimize the average time
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to generate a schedule (or prove that one dots not exist). Other utility functions could be entertained.
in fact, more recent research has focused on measures of schedule quality (sec [Chien94] for some
preliminary results on this direction),

5.3 PROBLEMDISTRI [IUTION

Adaptive LR-26 nceds arcpresentative sample of training examples for its adaptation phase. Unfor-
tunately, DSN Operations has only recently begun to maintain a database of scheduling problems
in amachine readable format. While this will ultimately allow the scheduler to tune itself to the actu-
a problem distribution, only a small body of actua problems was available at the time of this evalua-
tion. Therefore, wc resorted to other means to create arcasonable problem distribution.

We constructed an augmented set of training problems by syntactic manipulation of the set of real
problems. Recall that each scheduling problem is composed oft wo components: a set of project
requirements, and a set of time periods. Only the t imc periods change across scheduling problems,
S0 wc can organize the real problems into a set of tuples, one for each project, containing the weekly
blocks of time periods associated with it (one entry for each week the project is scheduled). The set
of augmented scheduling problems is constructed by taking the cross product of these tuples. Thus,
aweekly scheduling problem is defined by combining onc weeks worth of time periods from each
project (time periods for different projects may be drawn from different weeks), as well as the project
requirements for each. This simple procedure defines set of 6600 potential scheduling problems.

Two concerns led us to usc only a subset of these augmented problems. First, a significant percent-
age of augmented problems appeared much harder to solve (or prove unsatisfiable) than any of the
real problems (on almost half of the constructed problemst he scheduler d id not terminate, even with
large resource bounds). That such “hard” problems exist is not uncxpected as scheduling is NP-hard,
however, their frequency in the augmented sample. seems d isproportionatel y high. Second, the exis-
tence of these hard problems raises a secondary issue of how best to terminate search. The standard
approach is to impose some arbitrary resource bound and to declare a problem unsatisfiable if no
solution is found within this bound. Unfortunately this raises the issue of what sized bound is most
reasonable. We could have resolved this by adding the resource bound to the control grammar, how-
ever, at this point in the project we settled for a simpler approach. Instcad, we address this and the
previous concern by excluding from the augmented problem distribution those problems that seem
“fundamentally intractable.” What this means in practice is that we exclude problems that could not
be solved by any of alarge set of heuristic methods within a five minute resource bound. (For a dis-
cussion of how wc arrived at this CPU bound see Appendix A.) This results in a reduced set of about
three thousand scheduling problems. For comparative purposes, and to show the generality of adap-
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tive problem solving, wc include a secondary set of evaluations based on all 6600 augmented prob-

lems.

6 EMPIRICAL EVALUATION

The statistical theory that underlies COMPOSER predicts that, with high probability, Adaptive
1.R-26 will improve scheduling performance over the distribution of problems. This can be seen
as two basic claims that can be tested empirically. First, Adaptive 1.R-26 should identify transforma-
tions that improve the initial expert strategy associated withi 1LR-26. Second, it should identify these
transformations with the confidence predicted by the statistical theory. We arc also claiming that,
at least in practice COMPOSER can go beyond simply improving performance, and identify strate-
gies that rank highly when judged with respect to the whole space of possible strategies. A third
claim, therefore, is that Adaptive LLR-26 will find better strategics than if we simply picked the best
of alarge number of randomly selected strategies. Besidcs testing these three claims, we are aso
interested in three sccondary questions: how quickly does the technique improves expected utility
(c.g., how many cxamples arc required to make statistical inferences?); can Adaptive LR-26 im-
prove the number problems solved (or proved unsetisfiable) within the resource bound; and how
sensitive isthe effectivencss of adaptive problem solving to changes in the distribution of problems.

6.1 METHODOLOGY

Our cvaluation is influenced by the stochastic nature of adaptive problem solving. During adapta-
tion, Adaptive 1.R-26 is guided by a random selection of training examples according to the problem
distribution. Asa result of this random factor, the system will exhibit different behavior on different
runs of the system. Onsome runs the system may learn high utility strategies; on other runs the ran-
doJn examples may poorly represent the distribution and the system may adopt transformations with
negative utility. Thus, our evaluation is directed at assessing the expected performance of the adap-
tive scheduler by averaging results over twenty experimental trials.

For these experiments, the scheduler is allowed to adapt to 300 scheduling problems drawn random-
ly from the problem distribution described above. The expected utility of all learned strategies is
assessed on an independent test set of 1000 test examples drawn randomly from the complete set
of three thousand. The adapt at ion rate is assessed by rccording the strategy learned by Adaptive
1.R-20 after every 20 ecxamples. Thus wc can see the result of learning with only twenty examples,
only fort y examples, etc. We mcasure the statistical error of the technique (the probability of adopt-
ing a transforJnation with negative incremental utility) by performing eighty runs of the system on
eighty distinct training sets drawn randomly from the problem distribution. We measure the distribu-
tional sensitivity of the technique by evaluating the adaptive scheduler on a second distribution of
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Figure 5. Learning curve showing performance as a function of the number of training
examples and table of cxperimental results.

problems. Recall that wc purposcly excluded inherently difficult scheduling problems from the aug-
mented set of problems. If added, these excluded problems should make adaptation more difficult
as no strategy is likely to provide a noticeable improvement within the five minute resource bound.
The second evaluation includes these difficult problems

A third evaluation assesses the relative quality of the strategies identified by Adaptive LR-26 when
compared with other strategies in the strategy space. Thisisinferred by comparing the expected
utility of the learned strategies with several strategies drawn randomly from the space. This aso
provides an opportunity to assess the quality of the expert strategy, and thus give a sense of how chal-
lenging it isto improve it.

COMPOSER, the statistical component of the adaptive scheduler, has two parameters that govern
its behavior. The parameter & specifics the acceptable level of statistical error (this is the chance that
the technique will adopt a bad transformation or reject a good one). In Adaptive LR-26, thisis set

to a standard valuc of 5%. COMPOSER bases each statistical inferences on a minimum of »y exam-
ples. in Adaptive 1.LR-26, i is set to the empirically determined value of fifteen.

6.2 OVERALL RESULTS — DSNDISTRI BUTION

Figure 5 summarizes the results of adaptive problem solving over the constructed DSN problem dis-
tribut ion. The results support the t wo primary claims. First, the system learned search control strate-
gies that yielded a significant improvement in performance. Adaptive problem solving reduced the
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averagetime to so}ve aproblem (or prove it unsatisfi able) from 80 to 40 seconds (a 50% improve-
ment). Second, the observed statistical error fell well within the predicted bound, Of the 370 trans-
formations adopted across the twenty trials, only 3% decreased expected utility.

Duc to the stochastic nature of the adaptive scheduler, different strategies were learned on different
trials. All learned strategies produced at least some improvement in performance, The best of these
strategics requi red on] y 24 seconds on average to solve a problem (an i mprovement of 70%). The
fastest adaptations occurred early in the adaptation phase and performance improvements decreased
steadily throughout. It took an average of 62 examples to adopt each transformation. Adaptive
1.R-26 showed some improvement over the non-adaptive scheduler in terms of the number of prob-
lems that could be solved (or proven unsatisfiable) within the resource bound. LR-26 was unable
to solve2l % of the scheduling problems within the resource bound. One adaptive strategy reduced
this substantially reduced this number to 3%.

An analysis of the learned strategies is revealing. Most of t he performance improvement (about one
half) can be traced to modifications in LR-26's weight search method. The rest of the improvements
arc divided equally among changes to the heuristics for value ordering, constraint selection, and re-
finement. As expected, changes to the primary constraint ordering onl y degraded performance. The
top three Strategies arc illustrated in Figure 6.

1) Value ordering: penalize-conflictedness (1 c)
Weight search: first-solution (2d)
Primary constraint ordering: penalize-unforced-periods (3h)
Secondary constraint ordering: prefer-total-conflictc(incss (3¢)
Refinement method: systematic-refinement (4b)

2) Vaue ordering: prefer-gain (1a)
Weight search: first-solution (2d)
Primary constraint ordering: penalize.-unforccd-periods (3h)
Secondary constraint ordering:  prefer-total-conflictcdness (3c¢)
Refinement method: system:i[ic-refinement (4b)

3 Valuc ordering: penalize-confiictcdness (1 ¢)
Weight search: first-solution (2d)
Primary constraint ordering: penalize-unforced-pcrio(is (3h)
Secondary constraint ordering:  penalize-satisfaction-distance (31)
Refinement method: systemat ic-refincment (4b)

Figure 6: The three highest utility stratcgies learned by Adaptive LR-26.
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For the weight search, all of the learned strategies used the first-solution method (2d). It seems that,
at least in this domain and problem distribution, the reduction in refinement search space that results
from better relaxed solutions is more than offset by the additional cost of the weight search. The
scheduler did, however, benefit from the reduction in size that results from a systematic refinement
method.

More interestingly, Adaptive LR-26 seems to have “rediscovered” the common wisdom in heuristic
constraint-satisfaction search. When exploring ncw refinements, it is often suggested to chose the
least constrained value of the most constrained constraint. The best learned strategies follow this
advice while the worst strategies violate it, In the best strategy, the time period with lowest con-
flictedness is least constraining (in the sense that it will tend to produce. the least constraint propaga-
tions) and thus produces the least commitments on the resulting partial schedule. By this same argu-
ment, the constraint with the highest total conflicted will tend to be the hardest to satisfy.

6.3 OVERALL RESULTS — FULL AUGMENTED DISTRIBUTION

Figure 7 summarizes the results for the augmented distiibution. As expected, this distribution
proved more challenging for adaptive problem solving. Nevertheless, modest performance im-
provements were still possible, lending support to our claimed generality of the adaptive problem
solving approach. l.carned strategies reduced the average solution time from 156 to 146 seconds
(an 6% improvement). The best learned strategies required 133 seconds on average to solve a prob-
lem (an improvement of 15%). The observed statistical accuracy did not significantly differ from
the theoretically predicted bound, although it was dightly higher than expected: of 397 transforma-
tions were adopted across the trials, 6% produced a decrease in expected utility. The introduction
of the difficult problems resulted in higher variance in the distribution of incremental utility values
and thisis reflected in a higher sample complexit y: an average of 118 cxamples to adopt each trans-
formation. Some improvement was noted on the supposedly int ractable problems. Onc strategy
lcarned by Adaptive 1.R-26 increased the number of problems that could be processed within the
resource bound 51$10 to 57%.

Onc interesting result of this evaluation is that, unlike the previous evaluat ion, the best learned strate-
gics USC truncated-dual-descent as their weight search method (the strategies were similar along oth-
cr control dimensions). ‘I”his illustrates how even modest changes to the distribution of problems
can influcnce the design tradeoffs associated with a problem solver: in this case, changing the trade-
off between weight and refinement search.

28



%
§ 160 LR-26 Summary of Results Dist. 1-
@ ) # - )
& 140 : i'itiﬁi—ﬁ £ s LR-26 156
b [}
L Adaptive 1.R-26 g ‘§ avg. across trials 146
§ 120 % &| Adaptive —--—G--—g—at———-' LT
2 St Str
E 100 GE| DR _oesEew o
g Z 8 worst strategy 150
% 80 :
g Statistical predicted J 5%
£ 60 Error Rat I et
g ’ rror Rate observed 6%
< 40 :
25 L1{-26 5190
20 E § avg. across trias 54%
= S 1 O e e e ——— — i —
03060 90 120150180210240270300 | 5 2| ' 1Rizg |, [ S
. worst strategy 51%
Examples in Training Set

Figure 7. Learning curves and table of experimental results showing performance over the
augmented distribution (including “intractable” problems).
6.4 QUALITY OF LEARNED STRATEGIES
The third claim is that, in practice, COMPOSER can identify strategies that rank highly when judged
with respect to the wholc strategy space. A secondary question is how well does the expert strategy
perform. The improvements of Adaptive LR-26 arc of little significance if it the expert strategy per-
forms worse than most strategies in the space. Alternatively, if the expert strategy is extremely good,
itsi mprovement iscompel 1i ng.

As away of assessing these claims we estimate the probability of selecting a high utility strategy
given that wc clloosc it randomly from one of three strategy spaces. the space of al possible strate-
gics (expressible in the transformation grammar), the space of strategics produced by Adaptive
1.1<-26, and the t rivial space cent aining only the expert strategy. This corresponds to the problem
of estimating a probability density function (p.d.f.) for each space: ap.d.f., f(x), associated with a
random variable gives the probability that an instance of the variable has value x. More specifically
wc want to estimate the density functions, f;(u), which is the probability of randomly selecting aa
strategy from space s that has expected utility u.

We usc a non-parametric density estimation technique cal led the kernel method to estimate fs(u) (as
in[93]). To estimate the density function of the whole space, wc randomly selected and tested thirty
strategies. All of the learned strategies arc used to estimate the density of the learned space. (In both
cases, five percent of the data was withheld to estimate the bandwidth parameter used by the kernel
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method.) The p.d.f. associated with the single expert strategy is estimated using a normal model fit
to the 1000 test examples from the previous evaluation.

6.4.1 DSN Distribution

Figure 8 illustrates the results for the DSN distribution. In this evaluation the learned strategies sig-
nificantly outperformed the randomly selected strategies. Thus, onc would have to select and test
many strategies a random before finding one of comparable expected utility to one found by Adap-
tive 1.R-26. The results also indicate that the expertstrategy is aready a good strategy (as indicated
by the relative positions of the peaks for the expert and random strategy distributions), indicating
that the improvement duc to Adaptive LR-26 is significant and non-trivial.

The results provide additional insight into Adaptive LR-26’s learning bchavior. That the p.d.f for
the learned strategies contains several peaks, graphically illustrates that different local maxima exist
for this problem. Thus, there may be benefit in running the system multiple times and choosing the
best strat 1y. 1t also suggests that techniques designed to avoid local maxima would be beneficial.
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Figure 8: The DSN Distribution. The graph shows the probability of obtaining a strategy of a
particular utility, given that it is chosen from (1) the set of all strategies, (2) the set of learned

strategies, or (3) the expert strategy.

6.4.2 Full Augmented Distribution

Figure 9 illustrates the results for the full augmented distribution. The results are similar to the DSN
distribution: the lcarncd strategies strategies again outperformed the expert strategy which in turn
again outperformed the randomly selected strategies. The data shows that the expert strategy is sig-
nificantly better than randomly selected strategies. Together, these two evaluations support the
claim that Adaptive 1.R-26 is selecting high performance strategies. Even though the expert strategy
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is quite good when compared with the complete strategy space, the adaptive agorithm is able to im-
prove the expected problem solving performance.
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Figurc 9: The Full augmented distribution. The graph shows the probability of obtaining a
strategy of a particular utility, given that it is chosen from (1) the set of al strategies, (2) the set
of lcarned strategies, or (3) the expert strategy.

7 FUTURE WORK

The results of applying an adaptive approach to deep space network scheduling are very promising.
We hope to build on this success in a number of ways. We discuss these directions as they relate to
the three basic approaches to adaptive problem solving: syntactic, generative, and statistical.

7.1 SYNTACTIC APPROACHES

Syntactic approaches attempt to identify control strategies by anayzing the structure of the domain
and problemsolver. In 1.1<-26, our use of recta-control knowledge can be seen as a syntactic ap-
proach; although unlike most syntactic approaches that attempt to identify a specific combination
of heuristic methods, the recta-knowledge (dominance and indifference relations) acts as constraints
that only partiall y determine a strat egy. An advantage of this weakening of the syntactic approach
isthat it lends itself to a natural and complementary interaction with statistical approaches: structur-
a information restricts the space of reasonable strategies, which is then explored by statistical tech-
niques. Animportant question concerning such knowledge is to what extent does it contribute to
the success of our evaluations, and, more interestingly, how could such information be derived auto-
matically from a structural analysis of the domain and problem solver. Wcare currently performing
aseries of experiments to address the former question. A step towards the resolving the second ques-
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lion would be to evaluate in the context of LR-26 some of the structural relationships suggested by
recent work in this area [Frost94, Stone94].

7.2 GENERATIVE APPROACHES

Adaptive 1.R-26 uscs a hon-generative approach to conjecturing heuristics. Our experience in the
scheduling domain indicates that the performance of adaptive problem solving is inextricably tied
to the transformations it is given and the expense of processing examples. Just as an inductive learn-
ing technique relics on good attributes, if COMPOSER is to be effective, there must exist good meth-
ods for the control points that make up a strategy. Generative approaches could improve the effec-
tiveness of Adaptive LLR-26. Generative approaches dynamically construct heuristic methods in
response to observed problem-solving inefficiencies. The advantage of waiting until inefficiencies
arc observed is twofold. First, the exploration of the strategy space can be much more focused by
onl y conjecturing heuristics relevant to the observed complications. Second, the conjectured heuris-
tics can be tailored much more specifically to the characteristics of these observed complications.

Our previous app] i cat ion of COMPOSER achicved greater performance improvements that Adap-
tive LLR-20, in part because it exploited a generative technique to construct heuristics [Gratch92].
Ongoing research is dirccted towards incorporating generative methods into Adaptive 1LR-26. Some
preliminary work analyzes problem-solving traces to induce good heuristic methods. The constraint
and value ordering metrics discussed in Section 5.1.3 arc used to characterize each search node. This
information is then fcd to a (iccision-tree algorithm, which tries to induce effective heuristic meth-
ods. These gencrated methods can then be evaluated statistically.

7.3 STATISTICAL APPROACHES

Finally there arc directions of future work devoted towards enhancing the power of the basic statisti-
cal approach, both for Adapt ive LR-26 in particular, and for statist ical approaches in general. For
the scheduler, there arc two important considerations: enhancing the control grammar and exploring
awider class of utility functions, Several methods could be added to the control grammar. For exam-
ple, an informal analysis of the empirical evaluations suggests that the scheduler could benefit from
alook-back scheme such as back jumping [Gaschnig79] or backmarking [Haralick80]. We would
also like to investigate the adaptive problem solving methodology on aricher variety of scheduling
approaches, besides integer programming. Among these would be more powerful bottleneck cen-
tered techniques [Bicfeld89], constraint-based techniques [ Smith93], opportunistic techniques [Sa-
dch94], reactive techniques [Smith94] and more powerful backtracking techniques such as
[Xiong92].
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The current evaluation of the scheduler focused on problem solving time as a utility metric, but fu-
ture work will consider how to improve other aspects of the schedulers capabilities. For example,
by choosing another utility function we could guide Adaptive 1.R-26 towards influencing other as-
pects of LR-26’s behavior such as: increasing the amount of flexibility in the generated schedules,
increasing the robustness of generated schedules, maximizing the number of satisfied project
constraints' or reducing the implementation cost of gener ated schedules. These aternative utility
functions arc of great significance in that they provide much greater Icverage in impacting actual
operations. For example, finding heuristics which will reduce DSN schedule implementation costs
by 3% has a much greater impact than reducing the automated scheduler response time by 3%. Some
preliminary work has focused on improving schedule quality [Chicn94).

More gencrally, there arc several ways to improve the statistical approach embodied by COMPOS-
ER. Statistical approaches involve two processes, estimat ing the utility of transformations and ex-
ploring the space of strategies. The process of estimating expected utilities can be enhanced by more
efficient statistical methods [Chicn95, Moore94, Nelson95], alternative statistical decision require-
ments [Chien95] and more complex statistical models that weaken the assumption of normality
[Smyth92]. The process of exploring the strategy space can be improved both in terms of its efficien-
cy and susceptibility to local maxima, Moore and 1.cc propose a method called schemata search to
help reduce the combinatorics of the search. Problems with local maxima can be mitigated, albeit
expensively, by considering all k-wise combinations of heuristics (asin MULTI-TAC [Minton93]
or level 2 of Adaptive 1.R-26’s search), or by standard nuinerical optimization approaches such as
repeating the hillclimbing search severa times from different start points.

Onc final issue is the expense in processing training examples. In the 1.LR-26 domain this cost grows
linearly with the number of candidates at each hillclimbing step. While thisis not bad from acom-
plexit y standpoint, it is a pragmatic concern. There have been a few proposals to reduce the expense
in gathering statistics. in [Gratch92] wc exploited properties of the transformations to gather statis-
tics from a single solution attempt. That system required that the heuristic methods only act by prun-
ing refinements that arc guaranteed unsatisfiable. Greincr and Jurisica [Greiner92] discuss a similar
technique that eliminates this restriction by providing upper and lower bounds on the incremental
utility oft ransformat ions. Unfortunate] y, neither of these approaches could be applied to 1.R-26 so
devising methods to reduce the processing cost is an important direction for future work.

‘9. Yor a description of preliminary work in this area sce |Chien941.
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8 CONCLUSIONS

Although many scheduling problems are intractable, for actual sets of constraints and problem dis-
tributions, heuristic solutions can provide acceptable performance. A frequent difficulty isthat de-
termining appropriate heuristic methods for a given problem class and distribution is a challenging
process that draws upon deep knowledge of the domain and the problem solver used. Furthermore,
if the problem distribution changes sometime in the future, one must manually re-evaluate the effec-
tiveness of the heuristics.

Adaptive problem solving is a general approach for reducing this developmenta burden. This paper
has described the application of adaptive problem solving, using the1.R--26 scheduling system and
the COMPOSER machine learning system, to automatically learn effective scheduling heuristics for
Deep Space Network communications scheduling. By demonstrating the application of these tech-
niqucs to a real-world application problem, this paper has makes severa contributions. First, it pro-
vides an example of how a wide range of heuristics can be integrated into a flexible problem-solving
architecture — providing an adaptive problem-solving system with a rich control space to search.
Second, it demonstrates that the difficulties of local maxima and large search spaces entailed by the
rich control space can be tractably explored. Third, the successful application of the COMPOSER
statistical techniques demonstrates the real-world applicability of the statistical assumptions under-
lying the COMPOSER approach. Fourth, and most significantly, this paper demonstrates the viabil-
ity of adaptive problem solving. The strategies learned by the adaptive problem solving significantly
out performed t hc best human expert derived solution.

APPENDIX A: DETERMINATION OF THE RESOURCE BOUND

A good CPU bound to characterize “intractable” problems should have the characteristic that in-
creasing the bound s11oulcl have little effect on the proportion of problems solvable. In order to deter-
mine the resource bound to define “intractable” DSN scheduling problems wc empirically evaluated
how likely 1.1<—26 was to be able to solve a problem with various resource bounds. informally, we
experimented to find a bound of 5 CPU minutes. We then formally verified this bound by taking
those problems not solvable within the resource bound of 5 CPU minutes, allowing LR-26 an addi-
tional CPU hour to attempt to solve the problem, and observing how this affected solution rate. As
expected,even alocating significant more CPU time, 1.R- 26 was not able to solve many more prob-
lems. Figure 10 below shows the cumulative percentage of problems solved; from those not solvable
within the 5 minute CPU bound. This curve shows that even with another CPU hour (per problem!),
only about 12% of the problems became solvable. This graph also shows the 95% confidence inter-
vals for this cumulative curve. In light of these results, the fact that onc learned strategy was able
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to increase by 1 8% the percentage of problems solvable within the resource bound is even more

impressive. In effect, lecarning this strategy has a greater impact than allocating another CPU hour

pcr problem.
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Figure 10: Given that a problem cannot be solved in five minutes, show the probability that
it can be solved in up to an hour more time (with 95% confidence intervals).
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